Transverse Λ polarization and small-x physics

Daniël Boer KVI, University of Groningen

Outline

- Brief overview of transverse Λ polarization in $p+p \to \Lambda^{\uparrow} + X$: data & features
- Theoretical considerations: models and pQCD expectations
- Possible underlying mechanism in the intermediate to high p_T region: transverse momentum and spin dependence in the fragmentation process
- Analysis of $p + p(Be) \rightarrow \Lambda^{\uparrow}(\bar{\Lambda}^{\uparrow}) + X$
- Comments on high energy hadron collider data and the role of gluons
- $p + A \rightarrow \Lambda^{\uparrow} + X$ in the forward region as a probe of saturation physics

Transverse Λ polarization in unpolarized scattering

Large asymmetries have been observed in $p+p \to \Lambda^\uparrow + X$

G. Bunce et al., PRL 36 (1976) 1113

Blue arrows indicate the direction of positive transverse (w.r.t. production plane) polarization P_{Λ} , in the four quadrants

For symmetry reasons $P_{\Lambda} = 0$ at midrapidity

Generic p p data - x_F and p_T dependence

P_{Λ} turns out to be negative

For p_T above 1 GeV/c P_{Λ} becomes flat (measured up to 4 GeV/c)

Generic p p data - \sqrt{s} (in)dependence

Comprehensive review of data by A.D. Panagiotou (Int.J.Mod.Phys.A 5 (1990) 1197)

Theoretical considerations

Perturbative QCD conserves helicity, which leads to $P_{\Lambda}\sim \alpha_s m_q/\sqrt{\hat{s}}$ (= small) Kane, Pumplin & Repko, PRL 41 (1978) 1689

Many QCD-inspired models have been proposed, mostly based on recombination of a ud diquark from the proton and an s quark from the sea Spin-orbit coupling creates the polarization

The DeGrand-Miettinen model PRD 23 (1981) 1227 & 24 (1981) 2419

Theoretical considerations

A comprehensive review of models by J. Felix (Mod.Phys.Lett.A 14 (1999) 827-842) "In general, all models fail in fitting well the available experimental data on Λ polarization"

Most models give qualitative descriptions of the data for $p_T \lesssim 1-2\,\mathrm{GeV}/c$

However, for larger p_T , the recombination picture should become less adequate

How to explain that the large asymmetry persists at least to $p_T \approx 4~{\rm GeV}/c$?

For large p_T perturbative QCD and collinear factorization should apply

Collinear factorization

Consider for example the $qg \rightarrow qg$ subprocess

 $P_{\Lambda} \sim q(x_1) \otimes q(x_2) \otimes \hat{\sigma}_{qq \to qq} \otimes ?$

$$\sigma \sim q(x_1) \otimes g(x_2) \otimes \hat{\sigma}_{qg o qg} \otimes D_{\Lambda/q}(z)$$
 $q(x_1) = ext{quark density}$ $g(x_2) = ext{gluon density}$ $D_{\Lambda/q}(z) = \Lambda$ fragmentation function

No leading twist collinear fragmentation function exists for $q \to \Lambda^{\uparrow} X$ (due to symmetry reasons)

Would be necessarily higher twist, which leads to a fall-off as $1/p_T$

Noncollinear factorization

Dropping the requirement of collinear factorization, does allow for a solution

Mulders & Tangerman, NPB 461 (1996) 197

- ullet Transverse momentum dependent: $D_{1T}^{\perp}(z,oldsymbol{k}_T)$
- ullet A nonperturbative $k_T imes S_T$ dependence in the fragmentation process
- Allowed by the symmetries (parity and time reversal)

 Λ polarization arises in the fragmentation of an *unpolarized* quark Hence, the suggested name "polarizing fragmentation function"

Extraction of D_{1T}^{\perp}

Fit to $p\,p(Be)\to \Lambda^\uparrow(\bar\Lambda^\uparrow)\,X$ data with $p_T>1$ GeV/c to exclude the soft regime M. Anselmino, D.B., U. D'Alesio, F. Murgia, PRD 63 (2001) 054029

Whether p_T cut is sufficient to ensure validity of the description is a matter of concern

Nevertheless, reasonable functions are obtained

 $D_{\Lambda/q} =$ unpolarized fragmentation function Indumathi *et al.*, PRD 58 (1998) 094014

$$\Delta_0^N D_{\Lambda^\uparrow/q} \sim \langle \pmb{k}_\perp \rangle \; D_{1T}^\perp(z, \langle \pmb{k}_\perp \rangle) \quad [\# \; {\rm densities}]$$

$$z = P_\Lambda/p_q$$

High energy hadron collider data?

Validity of factorized description depends on a proper cross section description. This requires data at higher energies and higher p_T

Except for ISR, all data is from fixed target experiments, with $\sqrt{s} \lesssim 60$ GeV, requiring large K factors

Why no Λ^{\uparrow} data from high energy hadron colliders, such as RHIC or Tevatron?

Capabilities to measure Λ polarization via $\Lambda \to p \, \pi^-$ are usually restricted to the midrapidity region, where the degree of transverse polarization is very small

 $P_{\Lambda}=0$ at $\eta=0$ in $p\,p$ collisions in cms

Alternative: consider jet+ Λ production: $p p \to (\Lambda^{\uparrow} \text{jet})$ jet XSuch an asymmetry does not need to vanish at $\eta = 0$ D.B., Bomhof, Hwang, Mulders, PLB 659 (2008) 127; D.B., arXiv:0907.1610

Jet+ Λ production

The process $p\,p \to \left(\Lambda^\uparrow \mathrm{jet}\right)\,\mathrm{jet}\,X$ can be studied at RHIC and LHC For instance, ALICE can measure Λ 's over a wide p_T range, in a typical yearly run at least up to 16 GeV/c

Rapidity coverage of ALICE: $-0.9 \le \eta \le +0.9$

For jet rapidities in this kinematic region, the cross section is dominated by gluon-gluon $(gg \rightarrow gg)$ scattering, if gluons fragmenting into Λ 's are as important as quarks

No model or fit for $D_{1T}^{\perp\,g}$ is available yet, so no predictions can be made in this case Fit of D_{1T}^{\perp} to $p\,p\to \Lambda^{\uparrow}\,X$ data not sensitive to $g\to \Lambda\,X$

The role of gluons in $unpolarized \ \Lambda$ production even unclear Fits of D_1 to only $e^+e^- \to \Lambda X$ data also not sensitive to $g \to \Lambda X$

Role of $g \to \Lambda X$

$$Q = 10 \text{ GeV}$$
$$q = u + \bar{u}$$

De Florian, Stratmann, Vogelsang [DSV] (PRD 57 (1998) 5811) $(e^+e^- \text{ data only})$ Albino, Kniehl, Kramer [AKK] (NPB 734 (2006) 50) AKK update [AKK08] (NPB 803 (2008) 42)

Λ fragmentation function problem

Should we use the latest AKK08 then? Also problematic:

$$pp \rightarrow \Lambda/\overline{\Lambda} + X (-0.5 < y < 0.5), \sqrt{s} = 200 \text{ GeV}$$

 p_T distribution

solid: AKK08

dotted: AKK

dashed: DSV

data: STAR

"a possible inconsistency between the pp and e^+e^- reaction data for $\Lambda/\overline{\Lambda}$ production" AKK, NPB 803 (2008) 42

Forward $p\,A \to \Lambda^\uparrow X$

Polarization of forward Λ 's

 Λ polarization is especially interesting in pA reactions at very high \sqrt{s} , large A and η In this kinematic regime of small x, saturation of the gluon density is expected

Larger z region probed, hence using valence quark polarizing fragmentation functions should be fine

The saturation scale Q_s and even its evolution with x could be probed in this way D.B. & Dumitru, PLB 556 (2003) 33; D.B., Utermann, Wessels, PLB 671 (2009) 91

Could offer a direct probe of gluon saturation in both pp and pPb collisions at LHC

Forward rapidity data

None of the existing data is in the saturation regime

In the forward direction often protons cannot be identified, which hampers the measurement of Λ polarization

Forward Λ 's (y=2.75) in dAu collisions have been identified via event topology Abelev et~al., STAR Collaboration, PRC 76 (2007) 064904

Suggestion:

Use neutral decays $\Lambda \to n \pi^0$ (B.R. $\frac{1}{3}$) to measure Λ polarization at forward rapidities Cork et~al., PR 120 (1960) 1000; Olsen et~al., PRL 24 (1970) 843

Hadron production in the saturation regime

The cross section of forward hadron production in the (near-)saturation regime:

pdf \otimes dipole cross section \otimes FF

Dumitru, Jalilian-Marian, PRL 89 (2002) 022301

Since D_{1T}^{\perp} is k_T -odd, it essentially probes the derivative of the dipole cross section

At transverse momenta of $\mathcal{O}(Q_s)$ the dipole cross section changes much

This leads to a Q_s -dependent peak in the Λ polarization

First demonstrated for the McLerran-Venugopalan model, which has constant Q_s D.B. & Dumitru, PLB 556 (2003) 33

For an x-dependent Q_s a range of Q_s values is probed, so $a\ priori$ not clear whether this signature remains

Saturation effects in $p + A \rightarrow \Lambda + X$

Partonic cross section in the MV model

At high p_T , leading twist pQCD predicts:

$$\frac{d\sigma(q\,A\to q\,X)}{d\boldsymbol{p}_T^2}\sim \frac{1}{\boldsymbol{p}_T^4}$$

For $p_T \lesssim Q_s$ saturation effects modify the cross section

Λ polarization in $p+A\to \Lambda^\uparrow + X$

D.B. & Dumitru, PLB 556 (2003) 33

In the MV model, where Q_s is a constant, the peak is $x_F(=\xi)$ independent

Phenomenological models

The saturation scale actually changes with the small-x values probed:

$$Q_s^2(x) \propto \left(\frac{1}{x}\right)^{\lambda}$$

Models that incorporate this are for instance:

- GBW model, describes well small-x DIS data Golec-Biernat, Wüsthoff, PRD 59 (1999) 014017
- DHJ model, describes well forward $dAu \to \pi X$ RHIC data Dumitru, Hayashigaki, Jalilian-Marian, NPA 765 (2006) 464
- GS model, describes well $dAu \to \pi X$ and DIS small-x data D.B., Utermann, Wessels, PRD 77 (2008) 054014

Dipole scattering amplitude

The dipole scattering amplitude of these phenomenological models:

$$N(q_t, x) \equiv \int d^2 r_t \, e^{i\vec{q}_t \cdot \vec{r}_t} \exp \left[-\frac{1}{4} \left(r_t^2 Q_s^2(x) \right)^{\gamma(q_t, x)} \right]$$

GBW model: $\gamma_{GBW} = 1$

It leads to geometric scaling: $N = N(q_T^2/Q_s^2(x))$

In DIS $(q_t=Q)$ geometric scaling of the cross section was observed for x<0.01 Stasto, Golec-Biernat, Kwiecinski, PRL 86 (2001) 596

The saturation scale of the GBW model extracted from those DIS data:

$$Q_s(x) = 1 \,\text{GeV} \left(\frac{x_0}{x}\right)^{\lambda/2}$$

with $x_0 \simeq 3 \times 10^{-4}$ and $\lambda \simeq 0.3$

Geometric scaling at RHIC?

The DHJ model incorporates BFKL-type geometric scaling violations

$$\gamma_{\text{DHJ}}(q_t, x) = \gamma_s + (1 - \gamma_s) \frac{\log w}{\lambda y + d\sqrt{y} + \log w}$$

where $w = q_t^2/Q_s^2(x)$, $\gamma_s = 0.6275$, d = 1.2 and $y = \log 1/x$

The geometric scaling model rises more quickly towards 1 as $q_t \to \infty$

$$\gamma_{\rm GS}(w) = \gamma_s + (1 - \gamma_s) \frac{(w^a - 1)}{b + (w^a - 1)}$$

Here, a=2.82 and b=168 were fitted to the $d\,Au$ RHIC data

Both models describe well the forward pion production p_T spectra

DHJ and GS models lead to same conclusion about peak of Λ polarization:

Its x_F dependence is to very good approximation the x dependence of $Q_s!$

Λ polarization in $p+Pb\to \Lambda^\uparrow + X$ at $\sqrt{s}=8.8$ TeV

D.B., Utermann, Wessels, PLB 671 (2009) 91

R-ratio [Betemps, Goncalves, JHEP 0809 ('08) 019]

Conclusions

- \bullet At medium to high $p_T,\ p\, p \to \Lambda\, X$ may be described using D_{1T}^\perp
- Future jet+ Λ production data hopefully will allow more solid extraction This can also clarify the role of gluons It can also shed light on the inconsistency between $p\,p$ and e^+e^- data
- ullet The k_T -odd nature of D_{1T}^\perp can be of use to small-x physics
- ullet x_F dependence of the peak of Λ polarization directly probes the x dependence of Q_s
- ullet In principle possible at LHC (at RHIC the peak is likely at too low p_T)
- ullet Λ polarization studies at colliders could prove very interesting!